Structural properties of Cayley digraphs with applications to mesh and pruned torus interconnection networks
نویسندگان
چکیده
Despite numerous interconnection schemes proposed for distributed multicomputing, systematic studies of classes of interprocessor networks, that offer speed-cost tradeoffs over a wide range, have been few and far in between. A notable exception is the study of Cayley graphs that model a wide array of symmetric networks of theoretical and practical interest. Properties established for all, or for certain subclasses of, Cayley graphs are extremely useful in view of their wide applicability. In this paper, we obtain a number of new relationships between Cayley (di)graphs and their subgraphs and coset graphs with respect to subgroups, focusing in particular on homomorphism between them and on relating their internode distances and diameters. We discuss applications of these results to well-known and useful interconnection networks such as hexagonal and honeycomb meshes as well as certain classes of pruned tori.
منابع مشابه
Hexagonal and Pruned Torus Networks as Cayley Graphs
Hexagonal mesh and torus, as well as honeycomb and certain other pruned torus networks, are known to belong to the class of Cayley graphs which are node-symmetric and possess other interesting mathematical properties. In this paper, we use Cayley-graph formulations for the aforementioned networks, along with some of our previous results on subgraphs and coset graphs, to draw conclusions relatin...
متن کاملFurther Properties of Cayley Digraphs and Their Applications to Interconnection Networks
In this short communication, we extend the known relationships between Cayley digraphs and their subgraphs and coset graphs with respect to subgroups and obtain some general results on homomorphism and distance between them. Intuitively, our results correspond to synthesizing alternative, more economical, interconnection networks by reducing the number of dimensions and/or link density of exist...
متن کاملSome Conclusions on Cayley Digraphs and Their Applications to Interconnection Networks
In this short communication, we survey the relationships between Cayley digraphs and their subgraphs and coset graphs with respect to subgroups and obtain some general results on homomorphism and broadcasting between them. We also obtain a factorization of Cayley digraphs on subgraphs. We discuss the applications of these results to well-known interconnection networks. These conclusions possess...
متن کاملSome mathematical properties of cayley digraphs with applications to interconnection network design
We consider the relationships between Cayley digraphs and their coset graphs with respect to subgroups and obtain some general results on homomorphism and broadcasting between them. We also derive a general factorization theorem on subgraphs of Cayley digraphs by their automorphism groups. We discuss the applications of these results to well-known interconnection networks such as the butterfly ...
متن کاملCayley graph associated to a semihypergroup
The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as Hamiltonian cycles in this graph. Also, by some of examples we will illustrate the properties and behavior of these Cayley graphs, in particulars we show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 73 شماره
صفحات -
تاریخ انتشار 2007